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Introduction.

Evolutionary methods are exceedingly popular with practitioners of many

fields; more so than perhaps any optimization tool in existence. Historically

Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves

1997). However, in the last ten years Evolutionary Strategies (ESs) and Evo-

lutionary Programs (EPS) have gained a significant foothold (Glover 1998).

One partial explanation for this shift is the interest in using GAs to solve

continuous optimization problems. The typical GA relies upon a cumber-

some binary representation of the design variables. An ES or EP, however,

works directly with the real-valued design variables. For detailed references

on evolutionary methods in general and ES or EP in specific see Back (1996)

and Dasgupta and Michalesicz (1997). We call our evolutionary algorithm

BCB (bell curve based) since it is based upon two normal distributions.

BCB for continuous optimization, first presented in Sobieszczanski-Sobieski

et al. (1998), is similar in spirit to ESs and EPs but has fewer parameters to

adjust. A new generation in BCB is selected exactly the same as a (#+A)-ES

with A = #. That is, the best # individuals out of # parents plus A children

are selected for the next generation. Thus fit individuals may continue from

one generation to the next. The recombination and mutation mechanisms

are illustrated in Figure 1. Consider the line through two n-dimensional par-
ent vectors t61 and P2 selected for mating. First, determine the weighted

mean/_r of these two vectors where the weights are given by the fitness (KS

value) of each parent. Next, sample from a normal distribution N(0,crm).

The resulting point B =/l_ + 1162-/_1[ * N(0, am) is the child, prior to muta-

tion. Note that/_ is not restricted to lie on the line segment PIP2. Mutation

ensues by first generating a radius r for an n - 1 dimensional hypersphere.

The radius is a realization from a N(0, err). Typically (at >> cr,,). Finally

the mutated child C is selected by sampling uniformly on the surface of the



n -- 1 dimensional hypersphere. Hence, there are two parameters ar and crm

in addition to the traditional parameters of population size and number of

generations.
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Figure 1. BCB Geometrical Construct in 3D Space

Summary of Research.

The research effort over the grant period has resulted in two manuscripts--

Kincaid et al. (2000a) and Kincaid et al. (2000b). Each of these manuscripts

is available to the public at http ://www. math. win. edu/ rrkinc/heurist ic. html.

In KincaJd et al. (2000a) we presented an example illustrating the ability of

BCB to escape local optima. Following the example we examined the effect

of paxameter changes on the performance of BCB. Three rules of thumb were

developed. First, we found that it was crucial to scale the values of the de-

cision variables. Second, we found that, in general, (rr >> aT, is best. This



is partially due to the influenceof the Euclideandistancebetweenparents
on the placementof the centerof the n - 1 dimensional hypersphere in addi-

tion to crm. Third, we found that the performance of BCB is more sensitive

to the value of penalty-2 than for penalty-1. Following the computational

experiments of the parameters of BCB we explained and tested two varia-
tions of BCB. Both variations seek to identify clusters and outliers in a given

population. It is clear that the extra work involved in identifying clusters

and outliers is not beneficial in the serial version of BCB but provides some

impetus for the development of a parallel version of BCB.

In Kincaid et al. (2000b) we demonstrated that BCB is similar in spirit

to (# + #) evolutionary strategies and evolutionary programs but with fewer

parameters to adjust and no mechanism for self adaptation. The performance

of BCB is shown to dominate a Classical Evolutionary Program (CEP) but

not an improved Fast Evolutionary Program (FEP) on several standard test

functions (see Yao 1999 for details of CEP and FEP). BCB does significantly

better than FEP for unimodal test functions but loses out to FEP on three

of the four multi-modal test functions. Rather than attempt to find ways to

improve the performance of BCB we examined the utility of coupling BCB

with local search procedures (both gradient based and non-gradient based).

Here BCB's role is to identify high quality basins as opposed to determining

high quality solutions.

We tested two couplings of BCB with local search heuristics. The first

links BCB with a standard quasi-newton (gradient based) search--BCB-GS.

The second links BCB with a pattern search-BCB-PS. We selected a pat-

tern search based on the Hooke-Jeeves algorithm, whose full description can

be found in Box et al. (1969). To summarize, the algorithm proceeds by

performing several iterations of coordinate searches; that is, from a base so-

lution, the points that lie one step size away along the coordinate vectors are

tested for improvement. A list of temporary and permanent base points are

maintained. When a coordinate search around a permanent base point fails

to find improvement, the step size is halved, and another coordinate search

is performed there. Otherwise, if improvement is found, a new temporary

base point is constructed and used as the base of a coordinate search. If

no improvement is found around the temporary base point, the search back-

tracks to the last permanent base point. Otherwise, if improvement is found

around the temporary base point, the permanent base point is updated, and

a new coordinate search starts there. A up to date assessment of the utility

of pattern searches can be found in Lewis et al. (2000).



The BCB-GS and BCB-PS arepromising techniques.Dramatic improve-
ments, both in terms of solution quality and number of function evalutions,

were obtained for three of the multimodal functions by starting with BCB

and switching to either GS or PS both in terms of solution quality and num-

ber of function evalutions. The local optimization techniques for nonlinear

optimization problems are quite mature while the pattern search scheme has

good mathematical underpinnings and is easily ported to a parallel comput-

ing environment.
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